Tecnologias para mitigação da emissão de gases do efeito estufa e mudanças climáticas

Autores/as

DOI:

https://doi.org/10.47385/cadunifoa.v19.n54.5066

Palabras clave:

Legislação, Absorção Química, eficiência energética, Viabilidade economica, Separação de gás

Resumen

Nesta pesquisa foi realizado um estudo tecnológico e prospectivo de natureza qualitativa e descritiva sobre diferentes processos e tecnologias capazes de impactar e promover a mitigação das emissões de gases de efeito estufa. Este processo de alívio envolve a possibilidade de remoção de poluentes atmosféricos, bem como a redução das suas emissões. É crucial enfatizar a importância de avanços científicos significativos para a comercialização generalizada destas tecnologias, que são essenciais para que os países atinjam os objetivos estabelecidos. Isto é indispensável para minimizar as consequências desastrosas previstas para a humanidade nas próximas décadas, como resultado do aquecimento global e das mudanças ambientais. Nesse âmbito está a utilização de métodos CCUS (Captura, Utilização e Armazenamento de Carbono) e a redução das emissões de N2O, CH4 e gases fluorados pelas indústrias, usinas, setor agrícola e o uso indiscriminado da terra. Simultaneamente, há uma necessidade urgente de políticas locais, nacionais e internacionais mais rigorosas e restritivas que promovam e imponham uma mudança gradual, sustentável, mas definitiva, na estrutura energética global.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rodrigo da Silveira Ribeiro, Universidade Federal de Goiás

Engenheiro químico graduado pela Universidade Federal de Goiás (UFG),
com experiência em grandes empresas como Brainfarma e Gelnex nas áreas
de planejamento e produção. Desenvolveu pesquisa no projeto de
lixiviação do minério laterítico com alto teor de ferro para obtenção
de níquel, 2022, em parceria com a Anglo American. Realizou
intercâmbio nos EUA em 2015 e programa de trabalho na Walt Disney
Company em 2018.

Carlos Alberto Galeano Suarez, Universidade Federal de Goiás

Professor Adjunto na Universidade Federal de Goiás (UFG), Instituto de Química, Curso de Engenharia Química (2014-atual), sendo que os projetos que têm desenvolvido envolvem o estudo de Bioprocessos, com uso de resíduos agroindustriais , por meio de experimentos e simulações numéricas. Atualmente, atua como Coordenador de estágios no curso de Graduação em Engenharia Química da UFG. 

Inti Doraci Cavalcanti Montano, Universidade Federal de Goiás

Possui graduação em Engenharia Química pela Universidad Del Valle (2007) e mestrado e doutorado em Engenharia Química pela Universidade Federal de São Carlos. Atualmente é professor adjunto da Universidade Federal de Goiás. Suas atividades de pesquisa incluem modelagem, simulação e otimização de bioprocessos (com ênfase em bioetanol).

Citas

ABGI Brasil. TRL — Saiba mais sobre o Nível de Maturidade Tecnológica 2023. Available at: https://abgi-brasil.com/trl-recursos-financeiros-por-niveis-de-maturidade-tecnologica/. Accessed on: 22nd Nov. 2023.

Abu-Zahra, M. R. M.; Sodiq, A.; Feron, P. H. M. Commercial liquid absorbent-based PCC processes. In: FERON, P. H. M. Absorption-Based Post-Combustion Capture of Carbon Dioxide, 2016. p. 757-778. DOI: https://doi.org/10.1016/B978-0-08-100514-9.00029-9

American Chemical Society (USA). CAS 2022: Readdressing the balance: Exploring research trends in carbon dioxide sequestration. Available at: https://www.cas.org/sites/default/files/documents/%7B8c884d8f-0522-4792-b474-afee3f5bd378%7D_CASGENENGWHP100657220412-CAS-READDRESSING-BALANCE-WHITE-PAPER_3.0_LETTER_220504.pdf. Accessed on: 30th out. 2023.

Bhatta, L. K. G.; Subramanyam, S.; Chengala, M. D.; Olivera, S.; Venkatesh, K. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. Journal of Cleaner Production, v. 103, p. 171-196, 2015. DOI: https://doi.org/10.1016/j.jclepro.2014.12.059

BRS Convention and MC Convention (Suiça). Chemicals, wastes and climate change: Interlinkages and potential for coordinated action. Genebra; 2021. Available at: <https://minamataconvention.org/sites/default/files/documents/2021-07/Climate_Change_Interlinkages.pdf>. Accessed on: 29th out. 2023.

Budinis, S.; Krevor, S.; Mac Dowell, N.; Brandon, N.; Hawkes, A. An assessment of CCS costs, barriers and potential. Energy strategy reviews, v. 22, p. 61-81, 2018. DOI: https://doi.org/10.1016/j.esr.2018.08.003

Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; et al. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, v. 11, p. 1062-1176, 2018. DOI: https://doi.org/10.1039/C7EE02342A

Cachola, C. S.; Ciotta, M.; Santos, A. A.; Peyerl, D. Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science & Technology, V. 7, p. 100102, 2023. DOI: https://doi.org/10.1016/j.ccst.2023.100102

Carbon Brief. Carbon Brief clear on climate 2014: Around the world in 22 carbon capture projects. Available at: . Accessed on: 11th Nov. 2023.

Chatterjee, S.; Huang, K. W. Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways. Nat. Commun, v. 11, p. 3287, 2020. DOI: https://doi.org/10.1038/s41467-020-17203-7

Chauvy, R.; Meunier, N.; Thomas, D.; Weireld, G. D. Selecting emerging CO2 utilization products for short-to mid-term deployment. Applied energy, v. 236, p. 662-680, 2019. DOI: https://doi.org/10.1016/j.apenergy.2018.11.096

Climate Watch Data. GHG Emissions. Available at: https://www.climatewatchdata.org/ghg-emissions. Accessed on: 27th of November 2023.

Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, v. 342, p. 127776, 2023. DOI: https://doi.org/10.1016/j.fuel.2023.127776

Fennell, P. S.; Davis, S. J.; Mohammed, A. Decarbonizing cement production. Joule, v. 5, p. 1305–1311, 2021. DOI: https://doi.org/10.1016/j.joule.2021.04.011

Feron, P. H. M. Absorption-based post-combustion capture of carbon dioxide. DUXFORD: Woodhead publishing, 2016.

Gaurina-Međimurec, N.; Mavar, K. N. Geological sequestration of CO2. In: FRAZÃO, L. A. CO2 Sequestration. Zagred, 2019. p. 131-151.

Ghoneim, R.; Mete, G.; Hobley, A. Industrial analytics platform 2022. Steel and Cement Can Drive the Decade of Action on Climate Change: How? Available at: https://iap.unido.org/articles/steel-and-cement-can-drive-decade-action-climate-change-how. Accessed on: 01st of November 2023.

Gibbins, J.; Chalmers, H. Carbon capture and storage. Energy Policy, v. 36 p. 4317–22, 2008. DOI: https://doi.org/10.1016/j.enpol.2008.09.058

Gielen, D.; Kram, T. The role of non-CO2 greenhouse gases in meeting Kyoto targets. Economic Modelling of Climate Change, OECD Workshop Report. 1998. p. 17-18.

Global CCS Institute. Technology readiness and costs of CCS, 2021. Available at: < https://www.globalccsinstitute.com/wp-content/uploads/2021/03/Technology-Readiness-and-Costs-for-CCS-2021/>. Accessed on: 31th October 2023

Grubb, M. C.; Okereke, J.; Arima, V.; Bosetti, Y.; Chen, J.; Edmonds, S.; Gupta, A.; Köberle, S.; Kverndokk, A.; Malik, L. Introduction and Framing. In: SHUKLA, P. R.; et al.Climate Change 2022- Mitigation of Climate Change. New York: New York, 2022. p. 151-214. DOI: https://doi.org/10.1017/9781009157926.003

Haugen, N. E. L.; Li, Z.; Gouraud, V.; Bertholin, S.; Li. W, et al. Building the world’s largest Chemical Looping Combustion (CLC) unit. Int. J. of Greenhouse Gas Control, v. 129, p. 103975, 2023. DOI: https://doi.org/10.1016/j.ijggc.2023.103975

Hou, R.; Fong, C.; Freeaman, B. D.; Hill, M. R.; Xie, Z. Current status and advances in membrane technology for carbon capture. Separation and Purification Technology, v. 300, p. 121863, 2022. DOI: https://doi.org/10.1016/j.seppur.2022.121863

International Energy Agency (França). IEA 2023: Tracking Clean Energy Progress. Paris, 2023. Available at: <https://www.iea.org/reports/tracking-clean-energy-progress-2023/>. Accessed on: 29th October 2023.

International Energy Agency (França). IEA 2024: Carbon Capture, Utilization and Storage. Paris, 2023. Available at: . Accessed on: 29th January 2024.

Kamio, E.; Yoshioka, T.; Matsuyama, H. Recent Advances in Carbon Dioxide Separation Membranes: A Review. Journal of Chemical Engineering of Japan, v. 56, p. 2222000, 2023. DOI: https://doi.org/10.1080/00219592.2023.2222000

Kamkeng, A. D. N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO2 utilization: Current status, challenges and future prospects. Chemical Engineering Journal, v. 409, p. 128138, 2021. DOI: https://doi.org/10.1016/j.cej.2020.128138

Kim, C.; Yoo, C. J.; Oh, H. S.; Min, B. K.; Lee, Ung. Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, v. 65, p. 102239, 2022. DOI: https://doi.org/10.1016/j.jcou.2022.102239

Laçin, K.; Buse, Ç.; Binay, B. Anaerobic digestion methods for the production of fuels. In: SHADANGI, K. P. et al. Bioenergy Engineering. Woodhead Publishing, 2023. p. 201-235. DOI: https://doi.org/10.1016/B978-0-323-98363-1.00004-1

Leeson, D.; Mac Dowell, N.; Shah, N.; Petit, C.; Fennell, P. S. A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high pu-rity sources. Int. J. Greenh. Gas Control, v. 61, 71–84, 2017. DOI: https://doi.org/10.1016/j.ijggc.2017.03.020

Lin, Q.; Zhang, X.; Wang, T.; Zheng, C.; Gao, X. Technical perspective of carbon capture, utilization, and storage. Engineering, v. 14, p. 27-32, 2022. DOI: https://doi.org/10.1016/j.eng.2021.12.013

Liu, H.; Lu, H.; Hu, H. CO2 capture and mineral storage: State of the art and future challenges. Renewable and Sustainable Energy Reviews, v. 189, p. 113908, 2024. DOI: https://doi.org/10.1016/j.rser.2023.113908

Lockwood, Toby. A comparative review of next-generation carbon capture technologies for coal-fired power plant. Energy procedia, v. 114, p. 2658-2670, 2017. DOI: https://doi.org/10.1016/j.egypro.2017.03.1850

Maizland, L. Global climate agreements: Successes and failures. Council on Foreign Relations, v. 23, 2023.

Maj, M.; Miniszewski, M. The Emitting 7: the time and cost of climate neutrality. Warsaw: Polish Economic Institute, 2022.

Manning, C. G. Technology Readiness Levels. NASA 2023. Available at: https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/#:~:text=Technology%20Readiness%20Levels%20(TRL)%20are,based%20on%20the%20projects%20progress. Accessed on: 22 Nov. 2023.

Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, v. 7, p. 2897, 2020. DOI: https://doi.org/10.9770/jesi.2020.7.4(21)

Ministério do Meio Ambiente (Brasil). CLIMA 2023: Política Nacional sobre Mudança do Clima, 2023. Available at: https://antigo.mma.gov.br/clima/politica-nacional-sobre-mudanca-do-clima.html. Accessed on: 29th October 2023.

Miranda, J. L.; Moura, L. C.; Ferreira, H. B. P.; Abreu, T. P. Antropoceno e o CO2: Processos de Captura e Conversão. Revista Virtual de Química, v. 6, p. 1915-1946, 2018. DOI: https://doi.org/10.21577/1984-6835.20180123

Mora, C.; Spirandelli, D.; Franklin, E. C.; Lynham, J.; Kantar, M. B. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature climate change, v. 8, p. 1062-1071, 2018. DOI: https://doi.org/10.1038/s41558-018-0315-6

Mondal, M. K.; Balsora, H. K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy, v. 46, p. 431-441, 2012. DOI: https://doi.org/10.1016/j.energy.2012.08.006

Muslemani, H.; Liang, X.; Kaesehage, K.; Wilson, J. Business models for carbon capture, utilization and storage technologies in the steel sector: a qualitative multi-method study. Processes, v. 8, p. 576, 2020 DOI: https://doi.org/10.3390/pr8050576

National Aeronautics and Space Administration (USA). Jet Propulsion Laboratory 2023: Global Climate Change: Evidence. Available at: < https://climate.nasa.gov/faq/16/is-it-too-late-to-prevent-climate-change/#:~:text=While%20the%20effects%20of%20human,otherwise%20persist%20for%20essentially%20forever >. Accessed on: 27th Nov. 2023.

National Energy Technology Laboratory (USA). U.S. Department of Energy 2022: Chemical Looping Combustion. Available at: https://netl.doe.gov/node/7478. Accessed on: 12th of October 2023.

Noothout, P.; Wiersma, F.; Hurtado, O.; Macdonald, D.; Kemper, J.; Alphen, K. V. CO2 Pipeline infrastructure–lessons learnt. Energy Procedia, v. 63, p. 2481-2492, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.11.271

Okoli, C. O.; Lee, A.; Burgard, A. P.; Miller, D. C. A fluidized bed process model of a chemical looping combustion fuel reactor. Computer Aided Chemical Engineering, v. 44, p. 259-264, 2018. DOI: https://doi.org/10.1016/B978-0-444-64241-7.50038-0

Ozkan, M.; Nayak, S. P.; Ruiz, A. D.; Jiang, W. Current status and pillars of direct air capture technologies. Iscience, v. 25, p. 103990, 2022. DOI: https://doi.org/10.1016/j.isci.2022.103990

Pathak, M.; Slade, R.; Shukla, P. R.; Skea, J.; Pichs-Madruga, R.; Ürge-Vorsatz, D.2022: Technical Summary. In: SHUKLA, P. R. et al. Climate Change 2022: Mitigation of Climate Change. New York: New York, 2022. p. 51 – 147. DOI: https://doi.org/10.1017/9781009157926.002

Pörtner, H. O.; Roberts, D. C.; Poloczanska, E. S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; Okem, A. IPCC, 2022: Summary for Policymakers. In: PÖRTNER, H. O. Climate Change 2022: Impacts, Adaptation and Vulnerability. New York: New York, 2022. p. 3–33. DOI: https://doi.org/10.1017/9781009325844.001

Rackley, S. A. Carbon capture and storage. 2. ed. CHENNAI: Butterworth-Heinemann, 2017. DOI: https://doi.org/10.1016/B978-0-12-812041-5.00002-7

Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy, v. 266, p. 114848, 2020. DOI: https://doi.org/10.1016/j.apenergy.2020.114848

Senado Federal (Brasil). Senado Notícias 2023: Protocolo de Kyoto. Available at: <https://www12.senado.leg.br/noticias/entenda-o-assunto/protocolo-de-kyoto/>. Accessed on 31st of October

Subiter (Brasil). Como avaliar a maturidade de uma tecnologia? 2020. Available at: https://www.subiter.com/post/maturidade-tecnologica. Accessed on: 22nd of November 2023.

Sun, X.; Alcade, J.; Bakhtbidar, M.; Elio, J.; et al. Hubs and clusters approach to unlock the development of carbon capture and storage–Case study in Spain. Applied Energy, v. 300, p. 117418, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.117418

Terlouw, T.; Treyer, K.; Bauer, C.; Mazzotti, M. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environ. Sci. Technol., v. 55, p. 11397-11411, 2021. DOI: https://doi.org/10.1021/acs.est.1c03263

Theo, W.l.; Lim, J. S.; Hashim, H.; Mustaffa, A. A.; Ho, W. S. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl Energy, v. 183, p. 1633–63, 2016. DOI: https://doi.org/10.1016/j.apenergy.2016.09.103

Wilberforce, T.; Olabi, A. G.; Sayed, E. T.; Elsaid, K.; Abdelkareem, M. A. Progress in carbon capture technologies. Sci Total Environ, v. 761, p. 143203, 2021. DOI: https://doi.org/10.1016/j.scitotenv.2020.143203

Wu, X.; Wang, M.; Liao, P.; Shen, J.; Li, Y. Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Appl Energy, v. 257, p. 113941, 2020. DOI: https://doi.org/10.1016/j.apenergy.2019.113941

Younas, M..; Sohail, M.; Leong, L. K.; Bashir, M. J. K.; Sumathi, S. Feasibility of CO2 adsorption by solid adsorbents: A review on low-temperature systems. Int J Environ Sci Technol, v. 13, p. 1839-1860, 2016. DOI: https://doi.org/10.1007/s13762-016-1008-1

Yu, Xiang. CAS 2022: Carbon Capture & Sequestration. Available at: https://www.cas.org/pt-br/resources/cas-insights/sustainability/carbon-capture-sequestration. Accessed on: 29th of October 2023.

Zacari, Lucas (Brasil). Nexo Jornal 2023: O potencial do Brasil para capturar carbono. São Paulo, 2023. Available at: <https://www.nexojornal.com.br/expresso/2023/05/28/O-potencial-do-Brasil-para-capturar-carbono>. Accessed on: 09th of November 2023.

Ziobrowski, Z.; Rotkegel, A. Comparison of CO2 separation efficiency from flue gases based on commonly used methods and materials. Materials, v. 15, p. 460, 2022. DOI: https://doi.org/10.3390/ma15020460

Publicado

2024-09-16

Cómo citar

DA SILVEIRA RIBEIRO, Rodrigo; GALEANO SUAREZ, Carlos Alberto; CAVALCANTI MONTANO, Inti Doraci. Tecnologias para mitigação da emissão de gases do efeito estufa e mudanças climáticas. Cadernos UniFOA, Volta Redonda, v. 19, n. 54, p. 1–19, 2024. DOI: 10.47385/cadunifoa.v19.n54.5066. Disponível em: https://unifoa.emnuvens.com.br/cadernos/article/view/5066. Acesso em: 23 nov. 2024.

Número

Sección

Tecnologia e Engenharias

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a