Influence of different access cavity sizes on the direction of stress distribution in endodontically treated uniradicular maxillary premolar
a finite element analysis
DOI:
https://doi.org/10.47385/cadunifoa.v18.n53.4353Keywords:
Finite element analysis, Endodontics, Elastic modulusAbstract
Objective: This study aimed to evaluate the influence of different access cavity sizes on the stress distribution in an endodontically treated maxillary premolar model compared to an intact one using finite element analysis (FEA). Materials and Methods: The distributions of maximum and minimum principal stress were calculated. In the intact tooth, the maximum principal stress was located in the enamel-dentine junction and the minimum principal stress was in the cervical area. Results: In large-sized access, the maximum principal stress (tensile) increased by 41% compared to the contracted access model. This tensile strength was concentrated on interface tooth/restoration. Medium-sized access caused an increase of 27% of the minimum principal stress(compressive strength) on the apical region compared to the contracted access cavity. There was also an increase of 15% of the maximum principal stress (tensile strength) when comparing medium and minimum-sized cavities. Conclusion: The endodontic access cavity design modified the value and the direction of principal stress distribution of endodontically treated uniradicular maxillary premolar compared to the natural one.
Downloads
References
MEMON, S.; MEHTA, S.; MALIK, S. et al. Three-dimensional finite element analysis of the stress distribution in the endodontically treated maxillary central incisor by glass fiber post and dentin post. The Journal of the Indian Prosthodontic Society, v. 16, n. 1, p. 70-74, 2016. Doi: 10.4103/0972-4052.167933. DOI: https://doi.org/10.4103/0972-4052.167933
LLENA-PUY, M. C.; FORNER-NAVARRO, L.; BARBERO-NAVARRO, I. Vertical root fracture in endodontically treated teeth: a review of 25 cases. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, v. 92, n. 5, p. 553-555, 2001. Doi: 10.1067/moe.2001.117262. DOI: https://doi.org/10.1067/moe.2001.117262
SOUZA L. V. Influence of abfraction, root morphology and stress on biomechanical behavior of upper premolars. Dissertation - Universidade de Uberlândia. Uberlândia, 2012.
CLARK, D., KHADEMI, J. Modern molar endodontic access and directed dentin conservation. Dental Clinics, v. 54, n. 2, p. 249-273, 2010. Doi: 10.1016/j.cden.2010.01.001. DOI: https://doi.org/10.1016/j.cden.2010.01.001
KRISHAN, R., PAQUE, F., OSSAREH, A. et al. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. Journal of endodontics, v. 40, n. 8, p. 1160-1166, 2014. Doi: 10.1016/j.joen.2013.12.012. DOI: https://doi.org/10.1016/j.joen.2013.12.012
CORSENTINO, G.; PEDULLA, E.; CASTELLI, L. et al. Influence of access cavity preparation and remaining tooth substance on fracture strength of endodontically treated teeth. Journal of endodontics, v. 44, n. 9, p. 1416-1421, 2018. Doi: 10.1016/j.joen.2018.05.012. DOI: https://doi.org/10.1016/j.joen.2018.05.012
VIEIRA, G. C.; PÉREZ, A. R.; ALVES, F. R. et al. Impact of Contracted Endodontic Cavities on Root Canal Disinfection and Shaping. Journal of endodontics, v. 46, n. 5, p. 655-661, 2020. Doi: 10.1016/j.joen.2020.02.002. DOI: https://doi.org/10.1016/j.joen.2020.02.002
Guve N, Topuz O, Yikilgan I. Evaluation of Different Restoration Combinations Used in the Reattachment of Fractured Teeth: A Finite Element Analysis. Applied Bionics and Biomechanics 2018;2018:1-8. Doi: 10.1155/2018/8916928. DOI: https://doi.org/10.1155/2018/8916928
Munari LS. Stress distribution in first maxillary premolar tridimensional model with isotropic and anistropic enamel: comparative assessment by finite element analysis (Dissertation). Belo Horizonte (MG): Universidade Federal de Minas Gerais; 2012.
Roy S, Basu B. Mechanical and tribological characterization of human tooth. Materials Characterization 2008;59(6):747-756. Doi: https://doi.org/10.1016/j.matchar.2007.06.008. DOI: https://doi.org/10.1016/j.matchar.2007.06.008
Chai, H. On crack growth in molar teeth from contact on the inclined occlusal surface. Journal of the mechanical behavior of biomedical materials 2015;(44):76-84. Doi: http://dx.doi.org/10.1016/j.jmbbm.2014.12.014. DOI: https://doi.org/10.1016/j.jmbbm.2014.12.014
Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 1983;62(2):82-86. Doi: 10.1177/00220345830620021701. DOI: https://doi.org/10.1177/00220345830620021701
Melo-Silva TCF. Análise de Tensões nas restaurações dentárias adesivas diretas utilizando método de elementos finitos e ensaio de compressão. [Tese de doutorado], Universidade Federal Fluminense; 2017.
Ichim I, Lib Q, Loughranc J, et al. Restoration of non-carious cervical lesions Part I. Modelling of restorative fracture. Dent mater 2007;23(12):1553-1561. Doi: 10.1016/j.dental.2007.02.003. DOI: https://doi.org/10.1016/j.dental.2007.02.003
Ko CC, Chu CS, Chung KH, et al. Effects of posts on dentin stress distribution in pulpless teeth. J. Prosthet. Dent 1992;68:421-7,1992. Doi: 10.1016/0022-3913(92)90404-x. DOI: https://doi.org/10.1016/0022-3913(92)90404-X
Roperto R, Sousa YTS, Dias TR, et al. Biomechanical behavior of maxillary premolars with conservative and traditional endodontic cavities. Quintessence International 2019;50(5):350-356. Doi: 10.3290/j.qi.a42369.
Ten Cate JM. Oral histology: development, structure and function. 7th ed. Rio de Janeiro: Elsevier; 2008, 414.
Las Casas EB, Cornacchia TPM, Gouvêa PH, et al. Abfraction and anisotropy – effects of prism orientation on stress distribution. Comput. Method. Biomec 2003;6(1):65-73. Doi: 10.1080/1025584021000043357. DOI: https://doi.org/10.1080/1025584021000043357
Magne P, Belser UC. Porcelain versus composite inlays/onlays: effects of mechanical loads on stress distribution, adhesion, and crown flexure. Int J Periodontics Restorative Dent 2003;23:543-55.
Abou-Elnaga MY, Alkhawas MAM, Kim H, et al. Effect of Truss Access and Artificial Truss Restoration on the Fracture Resistance of Endodontically Treated Mandibular First Molars. J Endod 2019;45(6):813-817.Doi: 10.1016/j.joen.2019.02.007. DOI: https://doi.org/10.1016/j.joen.2019.02.007
Misra A, Spencer P, Marangos O, et al. Micromechanical analysis of dentin/adhesive interface by the finite element method. J Biomed Mater Res B Appl Biomater 2004;70:56-65. Doi: 10.1002/jbm.b.30012. DOI: https://doi.org/10.1002/jbm.b.30012
3M FiltekTM One Resina Bulk Fill - Perfil Técnico do Produto [Internet]. Accessed: https://multimedia.3m.com/mws/media/1509317O/filtek-one-bulk-fill-technical-profile.pdf. [Available at 20 June 2020].
Chlup Z, et al., Fracture behaviour of teeth with conventional and mini-invasive access cavity designs, J. Eur. Ceram. Soc 2017;37. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.03.025 DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.03.025
Rover G, Belladonna FG, Bortoluzzi EA, et al. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars. J Endod 2017;43:1657–62. Doi: 10.1016/j.joen.2017.05.006. DOI: https://doi.org/10.1016/j.joen.2017.05.006
Özyürek T, Ülker O, Demiryürek EO, et al. The Effects of Endodontic Access Cavity Preparation Design on the Fracture Strength of Endodontically Treated Teeth: Traditional Versus Conservative Preparation. J Endod 2018;44:800–805. Doi: 10.1016/j.joen.2018.01.020. DOI: https://doi.org/10.1016/j.joen.2018.01.020
Yan W, Montoya C, Ossa A, et al. Contribution of Root Canal Treatment to the Fracture Resistance of Dentin. Journal of Endod 2019;45(2). Doi: 10.1016/j.joen.2018.10.004. DOI: https://doi.org/10.1016/j.joen.2018.10.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Cadernos UniFOA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Declaração de Transferência de Direitos Autorais - Cadernos UniFOA como autor(es) do artigo abaixo intitulado, declaro(amos) que em caso de aceitação do artigo por parte da Revista Cadernos UniFOA, concordo(amos) que os direitos autorais e ele referentes se tornarão propriedade exclusiva desta revista, vedada qualquer produção, total ou parcial, em qualquer outra parte ou meio de divulgação, impressa ou eletrônica, sem que a prévia e necessária autorização seja solicitada e, se obtida, farei(emos) constar o agradecimento à Revista Cadernos UniFOA, e os créditos correspondentes. Declaro(emos) também que este artigo é original na sua forma e conteúdo, não tendo sido publicado em outro periódico, completo ou em parte, e certifico(amos) que não se encontra sob análise em qualquer outro veículo de comunicação científica.
O AUTOR desde já está ciente e de acordo que:
- A obra não poderá ser comercializada e sua contribuição não gerará ônus para a FOA/UniFOA;
- A obra será disponibilizada em formato digital no sítio eletrônico do UniFOA para pesquisas e downloads de forma gratuita;
- Todo o conteúdo é de total responsabilidade dos autores na sua forma e originalidade;
- Todas as imagens utilizadas (fotos, ilustrações, vetores e etc.) devem possuir autorização para uso;
- Que a obra não se encontra sob a análise em qualquer outro veículo de comunicação científica, caso contrário o Autor deverá justificar a submissão à Editora da FOA, que analisará o pedido, podendo ser autorizado ou não.
O AUTOR está ciente e de acordo que tem por obrigação solicitar a autorização expressa dos coautores da obra/artigo, bem como dos professores orientadores antes da submissão do mesmo, se obrigando inclusive a mencioná-los no corpo da obra, sob pena de responder exclusivamente pelos danos causados.