Technologies for mitigation of greenhouse gas emissions and climate change

Authors

DOI:

https://doi.org/10.47385/cadunifoa.v19.n54.5066

Keywords:

Legislation, Chemical Absorption, Energy efficiency, Economic feasibility, Gas separation

Abstract

In this research, a technological and prospective study of qualitative and descriptive nature was carried out regarding different processes and technologies capable of impacting and promoting the mitigation of greenhouse gas emissions. This relief process involves the possibility of removing atmospheric pollutants as well as reducing their emissions. It is crucial to emphasize the importance of significant scientific breakthroughs towards the widespread commercialization of these technologies, which are essential for countries to achieve their established goals. This is indispensable for minimizing the predicted disastrous consequences for humanity over the next decades as a result of global warming and environmental changes. Within this scope lies the utilization of CCUS methods (Carbon Capture, Utilization, and Storage) and the reduction of emissions of N2O, CH4, and fluorinated gases by industries, power plants, the agricultural sector, and the indiscriminate use of land. Simultaneously, there is an urgent need for stricter and more restrictive local, national, and international policies that promote and enforce a gradual, sustainable, yet definitive change in the global energy structure.

Downloads

Download data is not yet available.

Author Biographies

Rodrigo da Silveira Ribeiro, Universidade Federal de Goiás

Graduating in Chemical Engineering from the Federal University of Goiás (UFG), with scientific initiation in the project LEACHING LATERITE ORE WITH HIGH IRON CONTENT TO OBTAIN NICKEL, 2022. I completed one year of high school (sophomore/junior) at Goshen High School, in the state of NY, USA, during 2015. I was a Cast Member of a Disney exchange program, which lasted 2 months, between December and January 2018/2019. I did a 2-week exchange in Boston at Kings School, an English school. I won this exchange after being awarded in a test called the National High School Championship, carried out by the company CNEM.

Carlos Alberto Galeano Suarez, Universidade Federal de Goiás

Adjunct Professor at the Federal University of Goiás (UFG), Institute of Chemistry, Chemical Engineering Course (2014-current), and the projects they developed involve the study of Bioprocesses, using agro-industrial waste, through experiments and numerical simulations . He currently works as Internship Coordinator on the Undergraduate Course in Chemical Engineering at UFG. Bachelor's degree in Chemical Engineering from Universidade del Valle and Master's and Doctorate in Chemical Engineering from the Federal University of São Carlos.

Inti Doraci Cavalcanti Montano, Universidade Federal de Goiás

Graduated in Chemical Engineering from the Universidad Del Valle (2007) and Master and PhD in Chemical Engineering from the Federal University of São Carlos. He is currently an adjunct professor at the Federal University of Goiás. His research activities include modeling, simulation and optimization of bioprocesses (with emphasis on bioethanol).

References

ABGI Brasil. TRL — Saiba mais sobre o Nível de Maturidade Tecnológica 2023. Available at: https://abgi-brasil.com/trl-recursos-financeiros-por-niveis-de-maturidade-tecnologica/. Accessed on: 22nd Nov. 2023.

Abu-Zahra, M. R. M.; Sodiq, A.; Feron, P. H. M. Commercial liquid absorbent-based PCC processes. In: FERON, P. H. M. Absorption-Based Post-Combustion Capture of Carbon Dioxide, 2016. p. 757-778. DOI: https://doi.org/10.1016/B978-0-08-100514-9.00029-9

American Chemical Society (USA). CAS 2022: Readdressing the balance: Exploring research trends in carbon dioxide sequestration. Available at: https://www.cas.org/sites/default/files/documents/%7B8c884d8f-0522-4792-b474-afee3f5bd378%7D_CASGENENGWHP100657220412-CAS-READDRESSING-BALANCE-WHITE-PAPER_3.0_LETTER_220504.pdf. Accessed on: 30th out. 2023.

Bhatta, L. K. G.; Subramanyam, S.; Chengala, M. D.; Olivera, S.; Venkatesh, K. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. Journal of Cleaner Production, v. 103, p. 171-196, 2015. DOI: https://doi.org/10.1016/j.jclepro.2014.12.059

BRS Convention and MC Convention (Suiça). Chemicals, wastes and climate change: Interlinkages and potential for coordinated action. Genebra; 2021. Available at: <https://minamataconvention.org/sites/default/files/documents/2021-07/Climate_Change_Interlinkages.pdf>. Accessed on: 29th out. 2023.

Budinis, S.; Krevor, S.; Mac Dowell, N.; Brandon, N.; Hawkes, A. An assessment of CCS costs, barriers and potential. Energy strategy reviews, v. 22, p. 61-81, 2018. DOI: https://doi.org/10.1016/j.esr.2018.08.003

Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; et al. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, v. 11, p. 1062-1176, 2018. DOI: https://doi.org/10.1039/C7EE02342A

Cachola, C. S.; Ciotta, M.; Santos, A. A.; Peyerl, D. Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science & Technology, V. 7, p. 100102, 2023. DOI: https://doi.org/10.1016/j.ccst.2023.100102

Carbon Brief. Carbon Brief clear on climate 2014: Around the world in 22 carbon capture projects. Available at: . Accessed on: 11th Nov. 2023.

Chatterjee, S.; Huang, K. W. Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways. Nat. Commun, v. 11, p. 3287, 2020. DOI: https://doi.org/10.1038/s41467-020-17203-7

Chauvy, R.; Meunier, N.; Thomas, D.; Weireld, G. D. Selecting emerging CO2 utilization products for short-to mid-term deployment. Applied energy, v. 236, p. 662-680, 2019. DOI: https://doi.org/10.1016/j.apenergy.2018.11.096

Climate Watch Data. GHG Emissions. Available at: https://www.climatewatchdata.org/ghg-emissions. Accessed on: 27th of November 2023.

Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, v. 342, p. 127776, 2023. DOI: https://doi.org/10.1016/j.fuel.2023.127776

Fennell, P. S.; Davis, S. J.; Mohammed, A. Decarbonizing cement production. Joule, v. 5, p. 1305–1311, 2021. DOI: https://doi.org/10.1016/j.joule.2021.04.011

Feron, P. H. M. Absorption-based post-combustion capture of carbon dioxide. DUXFORD: Woodhead publishing, 2016.

Gaurina-Međimurec, N.; Mavar, K. N. Geological sequestration of CO2. In: FRAZÃO, L. A. CO2 Sequestration. Zagred, 2019. p. 131-151.

Ghoneim, R.; Mete, G.; Hobley, A. Industrial analytics platform 2022. Steel and Cement Can Drive the Decade of Action on Climate Change: How? Available at: https://iap.unido.org/articles/steel-and-cement-can-drive-decade-action-climate-change-how. Accessed on: 01st of November 2023.

Gibbins, J.; Chalmers, H. Carbon capture and storage. Energy Policy, v. 36 p. 4317–22, 2008. DOI: https://doi.org/10.1016/j.enpol.2008.09.058

Gielen, D.; Kram, T. The role of non-CO2 greenhouse gases in meeting Kyoto targets. Economic Modelling of Climate Change, OECD Workshop Report. 1998. p. 17-18.

Global CCS Institute. Technology readiness and costs of CCS, 2021. Available at: < https://www.globalccsinstitute.com/wp-content/uploads/2021/03/Technology-Readiness-and-Costs-for-CCS-2021/>. Accessed on: 31th October 2023

Grubb, M. C.; Okereke, J.; Arima, V.; Bosetti, Y.; Chen, J.; Edmonds, S.; Gupta, A.; Köberle, S.; Kverndokk, A.; Malik, L. Introduction and Framing. In: SHUKLA, P. R.; et al.Climate Change 2022- Mitigation of Climate Change. New York: New York, 2022. p. 151-214. DOI: https://doi.org/10.1017/9781009157926.003

Haugen, N. E. L.; Li, Z.; Gouraud, V.; Bertholin, S.; Li. W, et al. Building the world’s largest Chemical Looping Combustion (CLC) unit. Int. J. of Greenhouse Gas Control, v. 129, p. 103975, 2023. DOI: https://doi.org/10.1016/j.ijggc.2023.103975

Hou, R.; Fong, C.; Freeaman, B. D.; Hill, M. R.; Xie, Z. Current status and advances in membrane technology for carbon capture. Separation and Purification Technology, v. 300, p. 121863, 2022. DOI: https://doi.org/10.1016/j.seppur.2022.121863

International Energy Agency (França). IEA 2023: Tracking Clean Energy Progress. Paris, 2023. Available at: <https://www.iea.org/reports/tracking-clean-energy-progress-2023/>. Accessed on: 29th October 2023.

International Energy Agency (França). IEA 2024: Carbon Capture, Utilization and Storage. Paris, 2023. Available at: . Accessed on: 29th January 2024.

Kamio, E.; Yoshioka, T.; Matsuyama, H. Recent Advances in Carbon Dioxide Separation Membranes: A Review. Journal of Chemical Engineering of Japan, v. 56, p. 2222000, 2023. DOI: https://doi.org/10.1080/00219592.2023.2222000

Kamkeng, A. D. N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO2 utilization: Current status, challenges and future prospects. Chemical Engineering Journal, v. 409, p. 128138, 2021. DOI: https://doi.org/10.1016/j.cej.2020.128138

Kim, C.; Yoo, C. J.; Oh, H. S.; Min, B. K.; Lee, Ung. Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, v. 65, p. 102239, 2022. DOI: https://doi.org/10.1016/j.jcou.2022.102239

Laçin, K.; Buse, Ç.; Binay, B. Anaerobic digestion methods for the production of fuels. In: SHADANGI, K. P. et al. Bioenergy Engineering. Woodhead Publishing, 2023. p. 201-235. DOI: https://doi.org/10.1016/B978-0-323-98363-1.00004-1

Leeson, D.; Mac Dowell, N.; Shah, N.; Petit, C.; Fennell, P. S. A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high pu-rity sources. Int. J. Greenh. Gas Control, v. 61, 71–84, 2017. DOI: https://doi.org/10.1016/j.ijggc.2017.03.020

Lin, Q.; Zhang, X.; Wang, T.; Zheng, C.; Gao, X. Technical perspective of carbon capture, utilization, and storage. Engineering, v. 14, p. 27-32, 2022. DOI: https://doi.org/10.1016/j.eng.2021.12.013

Liu, H.; Lu, H.; Hu, H. CO2 capture and mineral storage: State of the art and future challenges. Renewable and Sustainable Energy Reviews, v. 189, p. 113908, 2024. DOI: https://doi.org/10.1016/j.rser.2023.113908

Lockwood, Toby. A comparative review of next-generation carbon capture technologies for coal-fired power plant. Energy procedia, v. 114, p. 2658-2670, 2017. DOI: https://doi.org/10.1016/j.egypro.2017.03.1850

Maizland, L. Global climate agreements: Successes and failures. Council on Foreign Relations, v. 23, 2023.

Maj, M.; Miniszewski, M. The Emitting 7: the time and cost of climate neutrality. Warsaw: Polish Economic Institute, 2022.

Manning, C. G. Technology Readiness Levels. NASA 2023. Available at: https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/#:~:text=Technology%20Readiness%20Levels%20(TRL)%20are,based%20on%20the%20projects%20progress. Accessed on: 22 Nov. 2023.

Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, v. 7, p. 2897, 2020. DOI: https://doi.org/10.9770/jesi.2020.7.4(21)

Ministério do Meio Ambiente (Brasil). CLIMA 2023: Política Nacional sobre Mudança do Clima, 2023. Available at: https://antigo.mma.gov.br/clima/politica-nacional-sobre-mudanca-do-clima.html. Accessed on: 29th October 2023.

Miranda, J. L.; Moura, L. C.; Ferreira, H. B. P.; Abreu, T. P. Antropoceno e o CO2: Processos de Captura e Conversão. Revista Virtual de Química, v. 6, p. 1915-1946, 2018. DOI: https://doi.org/10.21577/1984-6835.20180123

Mora, C.; Spirandelli, D.; Franklin, E. C.; Lynham, J.; Kantar, M. B. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature climate change, v. 8, p. 1062-1071, 2018. DOI: https://doi.org/10.1038/s41558-018-0315-6

Mondal, M. K.; Balsora, H. K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy, v. 46, p. 431-441, 2012. DOI: https://doi.org/10.1016/j.energy.2012.08.006

Muslemani, H.; Liang, X.; Kaesehage, K.; Wilson, J. Business models for carbon capture, utilization and storage technologies in the steel sector: a qualitative multi-method study. Processes, v. 8, p. 576, 2020 DOI: https://doi.org/10.3390/pr8050576

National Aeronautics and Space Administration (USA). Jet Propulsion Laboratory 2023: Global Climate Change: Evidence. Available at: < https://climate.nasa.gov/faq/16/is-it-too-late-to-prevent-climate-change/#:~:text=While%20the%20effects%20of%20human,otherwise%20persist%20for%20essentially%20forever >. Accessed on: 27th Nov. 2023.

National Energy Technology Laboratory (USA). U.S. Department of Energy 2022: Chemical Looping Combustion. Available at: https://netl.doe.gov/node/7478. Accessed on: 12th of October 2023.

Noothout, P.; Wiersma, F.; Hurtado, O.; Macdonald, D.; Kemper, J.; Alphen, K. V. CO2 Pipeline infrastructure–lessons learnt. Energy Procedia, v. 63, p. 2481-2492, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.11.271

Okoli, C. O.; Lee, A.; Burgard, A. P.; Miller, D. C. A fluidized bed process model of a chemical looping combustion fuel reactor. Computer Aided Chemical Engineering, v. 44, p. 259-264, 2018. DOI: https://doi.org/10.1016/B978-0-444-64241-7.50038-0

Ozkan, M.; Nayak, S. P.; Ruiz, A. D.; Jiang, W. Current status and pillars of direct air capture technologies. Iscience, v. 25, p. 103990, 2022. DOI: https://doi.org/10.1016/j.isci.2022.103990

Pathak, M.; Slade, R.; Shukla, P. R.; Skea, J.; Pichs-Madruga, R.; Ürge-Vorsatz, D.2022: Technical Summary. In: SHUKLA, P. R. et al. Climate Change 2022: Mitigation of Climate Change. New York: New York, 2022. p. 51 – 147. DOI: https://doi.org/10.1017/9781009157926.002

Pörtner, H. O.; Roberts, D. C.; Poloczanska, E. S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; Okem, A. IPCC, 2022: Summary for Policymakers. In: PÖRTNER, H. O. Climate Change 2022: Impacts, Adaptation and Vulnerability. New York: New York, 2022. p. 3–33. DOI: https://doi.org/10.1017/9781009325844.001

Rackley, S. A. Carbon capture and storage. 2. ed. CHENNAI: Butterworth-Heinemann, 2017. DOI: https://doi.org/10.1016/B978-0-12-812041-5.00002-7

Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy, v. 266, p. 114848, 2020. DOI: https://doi.org/10.1016/j.apenergy.2020.114848

Senado Federal (Brasil). Senado Notícias 2023: Protocolo de Kyoto. Available at: <https://www12.senado.leg.br/noticias/entenda-o-assunto/protocolo-de-kyoto/>. Accessed on 31st of October

Subiter (Brasil). Como avaliar a maturidade de uma tecnologia? 2020. Available at: https://www.subiter.com/post/maturidade-tecnologica. Accessed on: 22nd of November 2023.

Sun, X.; Alcade, J.; Bakhtbidar, M.; Elio, J.; et al. Hubs and clusters approach to unlock the development of carbon capture and storage–Case study in Spain. Applied Energy, v. 300, p. 117418, 2021. DOI: https://doi.org/10.1016/j.apenergy.2021.117418

Terlouw, T.; Treyer, K.; Bauer, C.; Mazzotti, M. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environ. Sci. Technol., v. 55, p. 11397-11411, 2021. DOI: https://doi.org/10.1021/acs.est.1c03263

Theo, W.l.; Lim, J. S.; Hashim, H.; Mustaffa, A. A.; Ho, W. S. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl Energy, v. 183, p. 1633–63, 2016. DOI: https://doi.org/10.1016/j.apenergy.2016.09.103

Wilberforce, T.; Olabi, A. G.; Sayed, E. T.; Elsaid, K.; Abdelkareem, M. A. Progress in carbon capture technologies. Sci Total Environ, v. 761, p. 143203, 2021. DOI: https://doi.org/10.1016/j.scitotenv.2020.143203

Wu, X.; Wang, M.; Liao, P.; Shen, J.; Li, Y. Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Appl Energy, v. 257, p. 113941, 2020. DOI: https://doi.org/10.1016/j.apenergy.2019.113941

Younas, M..; Sohail, M.; Leong, L. K.; Bashir, M. J. K.; Sumathi, S. Feasibility of CO2 adsorption by solid adsorbents: A review on low-temperature systems. Int J Environ Sci Technol, v. 13, p. 1839-1860, 2016. DOI: https://doi.org/10.1007/s13762-016-1008-1

Yu, Xiang. CAS 2022: Carbon Capture & Sequestration. Available at: https://www.cas.org/pt-br/resources/cas-insights/sustainability/carbon-capture-sequestration. Accessed on: 29th of October 2023.

Zacari, Lucas (Brasil). Nexo Jornal 2023: O potencial do Brasil para capturar carbono. São Paulo, 2023. Available at: <https://www.nexojornal.com.br/expresso/2023/05/28/O-potencial-do-Brasil-para-capturar-carbono>. Accessed on: 09th of November 2023.

Ziobrowski, Z.; Rotkegel, A. Comparison of CO2 separation efficiency from flue gases based on commonly used methods and materials. Materials, v. 15, p. 460, 2022. DOI: https://doi.org/10.3390/ma15020460

Published

2024-09-16

How to Cite

DA SILVEIRA RIBEIRO, Rodrigo; GALEANO SUAREZ, Carlos Alberto; CAVALCANTI MONTANO, Inti Doraci. Technologies for mitigation of greenhouse gas emissions and climate change. Cadernos UniFOA, Volta Redonda, v. 19, n. 54, p. 1–19, 2024. DOI: 10.47385/cadunifoa.v19.n54.5066. Disponível em: https://unifoa.emnuvens.com.br/cadernos/article/view/5066. Acesso em: 21 nov. 2024.

Issue

Section

Tecnologia e Engenharias

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)