Removing heavy metals by electrocoagulation using stainless steel mesh electrodes: a study of wastewater from soil treated with metallurgical residues

a study of wastewater from soil treated with metallurgical residues

Autores/as

  • Izabel de Oliveira da Mota Universidade Federal Fluminense
  • Patricia de Oliveira da Mota Universidade Federal do Rio de Janeiro
  • João Gomes de Oliveira Filho Universidade Estácio de Sá
  • Leonardo Martins da Silva Universidade Federal Fluminense

DOI:

https://doi.org/10.47385/cadunifoa.v11.n31.404

Palabras clave:

new electrode, wastewater treatment, flotation

Resumen

The present work aims to study the possibility of zinc, cadmium and manganese removal from synthetic solutions simulating wastewater from washing soil by electrocoagulation process using stainless steel mesh electrodes. The influences of current density (from 10 to 40 mA cm-2), time (20 and 40 minutes) and pH (4 to 10) on removal efficiency were explored in a batch cell to determine the best experimental conditions. Under the operating conditions tested, the best result was observed at pH = 10, corresponding about 90% of heavy metals removal from solutions initially containing 15 mg dm-3 of each metal, with a power consumption of 9 kW h m-3. There are few published studies using stainless steel electrodes for the treatment of mixed heavy metals and this study newly indicated that the proposed method is adequate to remove the common heavy metals found in wastewater from heavy metals polluted soil.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Izabel de Oliveira da Mota, Universidade Federal Fluminense

Possui graduação em Engenharia Química pela Universidade Federal Rural do Rio de Janeiro (2008), mestrado em Engenharia Química pela Universidade Federal Rural do Rio de Janeiro (2011) e doutorado em Engenharia Metalúrgica pela Universidade Federal Fluminense (2015). Atualmente é gestora de projetos e consultora técnica da Gomes & Brito Engenharia e Consultoria, professora do Centro Universitário de Volta Redonda e professora da pós-graduação da Universidade Estácio de Sá. Tem experiência na área de Engenharia Química, com ênfase em Engenharia Química e Ambiental.

Citas

CHAFI, M.; GOURICH, B.; ESSADKI, A. H.; VIAL, C.; FABREGAT, A. Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination, v. 281, p. 285–292, 2011.

DANESHVAR, N.; KHATAEE, A. R.; GHADIM, A. R. RASOULIFARD, M. H. Decolorization of C. I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). Journal of Hazardous Materials, v. 148, n. 3, p. 566–572, 2007.

FAJARDO, A. S.; RODRIGUES, R. F.; MARTINS, R. C.; CASTRO, L. M.; QUINTA-FERREIRA, R. M. Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chemical Engineering Journal, v. 275, p. 331–341, 2015.

FUKUI, Y.; YUU, S. Development of Apparatus for Electroflotation. Chemical Engineering Science, v. 39, n. 6, p. 939-945, 1984.

HANAY, O.; HASAR, H. Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes. Journal of Hazardous Materials, v. 189, p. 572–576, 2011.

JUNG, Y. K.; HAN, M. Y. Simultaneous Removal of Cadmium and Turbidity in Contaminated Soil-Washing Water by Electroflotation. Water Science Technology, v. 46, n. 11-12, p. 225-230, 2002.

KOTTI, M.; KSENTINI, I.; BEN MANSOUR, L. Bubble hydrodynamic influence on oxygen transfer rate at presence of cationic and anionic surfactants in electroflotation process. Journal of Hydrodynamics, v. 25, n. 5, p. 747-754, 2013.

LIUYI, R. YIMIN, Z. WENQING, Q; SHENXU, B.; WANG, P.; CONGREN, Y. Investigation of condition-induced bubble size and distribution in electroflotation using a high-speed camera. International Journal of Mining Science and Technology, v. 24, p. 7-12, 2010.

LU, J.; LI, Y.; YIN, M.; MA, X.; LIN, S. Removing heavy metal ions with continuous aluminum electrocoagulation: A study on back mixing and utilization rate of electro-generated Al ions. Chemical Engineering Journal, v. 267, n. 1, p. 86-92, 2015.

MAHMOUD, M. S.; FARAH, J. Y.; FARRAG, T. E. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes. Egyptian Journal of Petroleum, v. 22, n. 1, p. 211–216, 2013.

MANSSORIAN, H. J.; MAHVI, A. H.; JAFARI, A. J. Removal of lead and zinc from battery industry wastewater using electrocoagulation process: Influence of direct and alternating current by using iron and stainless steel rod electrodes. Separation and Purification Technology, v. 135, p. 165–175, 2014.

MARTÍNEZ-VILLAFAÑE, J. F.; MONTERO-OCAMPO, C.; GARCÍA-LARA, A. M. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water. Journal of Hazardous Materials, v. 172, n. 2-3, p. 1617-1622, 2009.

MOHORA, E.; RONCEVIC, S.; AGBABA, J.; TUBIC, A.; MITIC, M.; KLAŠNJA, M.; DALMACIJA, B. Removal of arsenic from groundwater rich in natural organic matter (NOM) by continuous electrocoagulation/flocculation (ECF). Separation and Purification Technology, v. 136, p. 150–156, 2014.

MOLLAH, M. Y. A.; MORKOVSKY, P.; GOMES, J. A. G.; KESMEZ, M.; PARGA, J.; COCKE, D. L. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, v. 114, p. 199–210, 2004.

MOTA, I. O.; CASTRO, J. A.; CASQUEIRA, R. G.; OLIVEIRA JUNIOR, A. G. Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. Journal of Materials Research and Technology, v. 4, n. 2, p. 109-113, 2015.

NASCIMENTO, R. S. M. P; CARVALHO, G. S.; PASSOS, L. P.; MARQUES, J. J. Lixiviação de chumbo e zinco em solo tratado com resíduos de siderurgia. Pesquisa Agropecuária Tropical, v. 40, n. 4, p. 497-504, 2010.

ORKUN, M.O.; KULEYIN, A. Treatment performance evaluation of chemical oxygen demand from landfill leachate by electro-coagulation and electrofenton technique. Environmental Progress & Sustainable Energy, v. 31, n. 1, p. 59-67, 2012.

RASBAND, W. S. IMAGE J. U. S. National Institutes of Health, Bethesda, Maryland, In: <http://rsb.info.nih.gov/ij/>, 1997-2008.

RICORDEL, C.; DJELAL, H. Treatment of landfill leachate with high proportion of refractory materials by electrocoagulation: System performances and sludge settling characteristics. Journal of Environmental Chemical Engineering, v. 2, p. 1551–1557, 2014.

ROSSOL, C. D.; SCALON FILHO, H.; BERTÉ, L. N.; JANDREY, P. E.; SCHWANTES, D.; GONÇALVES JR, A. C. Caracterização, classificação e destinação de resíduos da agricultura. Scientia Agraria Paranaensis, v.11, n. 4, p. 33-43, 2012.

SARKAR, M. S. K. A; DONNE, S. W.; EVANS, S. W. Hydrogen bubble flotation of Silica. Advanced Powder Technology, v. 21, p. 412 – 418, 2010.

SOBRAL, M. F.; NASCIMENTO, C. W. A; CUNHA, K. P. V; FERREIRA, H. A.; SILVA, A. J.; SILVA, F. B. V. Basic slag and its effects on the concentration of nutrients and heavy metals in sugarcane. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, n. 8, 2011.

TAK, B.; TAK, B.; KIM, Y.; PARK, Y.; YOON, Y.; MIN, G. Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD). Journal of Industrial and Engineering Chemistry, v. 28, p. 307–315, 2015.

VU, T. P.; VOGEL, A.; KERN, F.; PLATZ, S.; MENZEL, U.; GADOW, R. Characteristics of an electrocoagulation–electroflotation process in separating powdered activated carbon from urban wastewater effluent. Separation and Purification Technology, v. 134, n. 25, p. 196–203, 2014.

Publicado

2016-08-10

Cómo citar

MOTA, Izabel de Oliveira da; MOTA, Patricia de Oliveira da; FILHO, João Gomes de Oliveira; SILVA, Leonardo Martins da. Removing heavy metals by electrocoagulation using stainless steel mesh electrodes: a study of wastewater from soil treated with metallurgical residues: a study of wastewater from soil treated with metallurgical residues. Cadernos UniFOA, Volta Redonda, v. 11, n. 31, p. 47–57, 2016. DOI: 10.47385/cadunifoa.v11.n31.404. Disponível em: https://unifoa.emnuvens.com.br/cadernos/article/view/404. Acesso em: 21 nov. 2024.

Número

Sección

Tecnologia e Engenharias

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.