Evaluation of the Kinetic of Cu2+ Adsorption in the PVA Membranes Crosslinked with Sulfosuccinic and Citric Acids

Autores/as

  • Fabiana Campos Nascimento UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.
  • Liz Contino Vianna Aguiar UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.
  • Mariana Gonçalves Dias Chaves Programa de Pós-Graduação em Engenharia Ambiental, Universidade Federal do Paraná, Campus Politécnico, Setor de Tecnologia, Curitiba, Paraná, Brasil.
  • Leonardo Martins Silva UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.
  • José Adilson de Castro UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

DOI:

https://doi.org/10.47385/cadunifoa.v16.n47.3813

Palabras clave:

Membranes, Poly (Vinyl Alcohol), Copper Adsorption, Crosslinked

Resumen

Membrane of Poly (vinyl alcohol) (PVA) crosslinked with sulfosuccinic acid (SSA) and citric acid (CA) were characterized for the adsorption of copper ions (Cu2+). Usually the membranes used for this application have inorganic materials in their structure. However, when using only these acids, it was verified that the membrane containing SSA presents less swelling than the PVA and absorbs a higher content of Cu2+ when compared to the membrane containing CA. Therefore, it can be assumed that the membrane containing SSA can be used to cover soils that need protection against this type of ion. leaching. Kinetic models of diffusional and chemical control were used to understand the interaction phenomena of adsorption of ions and membranes. The mixed control kinetic model was also evaluated, in which it was possible to evaluate different parameters regarding the interaction ions and membranes. The obtained results indicated that the developed process has relevant utility. The kinetic modeling results contribute to a better understanding of heating phenomena of adsorption and also to the development of new cleaner technologies.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fabiana Campos Nascimento, UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

Liz Contino Vianna Aguiar, UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

Mariana Gonçalves Dias Chaves, Programa de Pós-Graduação em Engenharia Ambiental, Universidade Federal do Paraná, Campus Politécnico, Setor de Tecnologia, Curitiba, Paraná, Brasil.

Programa de Pós-Graduação em Engenharia Ambiental, Universidade Federal do Paraná, Campus Politécnico, Setor de Tecnologia, Curitiba, Paraná, Brasil.

Leonardo Martins Silva, UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

José Adilson de Castro, UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

UFF - Universidade Federal Fluminense, PPGEM - Programa de Pós Graduação em Engenharia Metalúrgica, Universidade Federal Fluminense, Volta Redonda, RJ, Brasil.

Citas

AHMAD, A. L.; YUSUF, N. M.; OOI, B. S. Preparation and modification of poly (vinyl) alcohol membrane: Effect of crosslinking time towards its morphology. Desalination, v. 287, p. 35-40, 2012.

BABU, J.; MURTHY, Z. V. P. Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Separation and Purification Technology, v. 183, p. 66-72, 2017.

BEDIAKO, J. K.; PARK, S. W.; CHOI, J.W.; SONG, M.H.; YUN, Y.S. High-performance and acid-tolerant polyethylenimine-aminated polyvinyl chloride fibers: fabrication and application for recovery of platinum from acidic wastewaters. Journal of Environmental Chemical Engineering, v. 7, n. 1, p. 102839, 2019.

BEPPU, M. M.; VIEIRA, R. S.; AIMOLI, C. G.; SANTANA, C. C. Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. Journal of membrane science, v. 301, n. 1-2, p. 126-130, 2007.

BOROGLU, M. S.; CELIK, S. U.; BOZKURT, A.; BOZ, I. The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly (vinyl alcohol) and imidazole. Journal of membrane science, v. 375, n. 1-2, p. 157-164, 2011.

CADINELLI, B. L. S.; DO NASCIMENTO, F. C.; FARIA, T. A. A.; FREIRE, L. M.; DA SILVA, L.; DE CASTRO, J. A.; BRUM, F. J. B. Synthesis and characterization by ellipsometry of cationic membranes for fuel cells. In: Materials Science Forum. Trans Tech Publications Ltd, 2018. p. 625-630.

EBENEZER, D.; DESHPANDE, A. P.; HARIDOSS, P. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2–O2 proton exchange membrane fuel cells. Journal of Power Sources, v. 304, p. 282-292, 2016.

FU, F; WANG, Q. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, v. 92, n. 3, p. 407-418, 2011.

KUNZ, A.; PERALTA-ZAMORA, P.; MORAES, S. G. D.; Durán, N. Novas tendências no tratamento de efluentes têxteis. Química nova, v. 25, p. 78-82, 2002.

LIU, H.; KONG, D.; SUN, W.; LI, Q.; ZHOU, Z.; REN, Z. Effect of anions on the polymerization and adsorption processes of Cu (II) ion-imprinted polymers. Chemical Engineering Journal, v. 303, p. 348-358, 2016.

NASCIMENTO, F. C.; DE AGUIAR, L. C. V.; COSTA, L. A. T.; FERNANDES, M. T.; MARASSI, R. J.; DE SOUZA GOMES, A., DE CASTRO, J. A. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: effects of the crosslinking agents. Polymer Bulletin, v. 78, n. 2, p. 917-929, 2021.

REDDY, N; YANG, Y. Citric acid cross-linking of starch films. Food chemistry, v. 118, n. 3, p. 702-711, 2010.

RHIM, J. W.; PARK, H. B.; LEE, C. S.; JUN, J. H.; KIM, D. S.; LEE, Y. M. Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science, v. 238, n. 1-2, p. 143-151, 2004.

SHI, R.; BI, J.; ZHANG, Z.; ZHU, A.; CHEN, D.; ZHOU, X.; TIAN, W. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydrate polymers, v. 74, n. 4, p. 763-770, 2008.

SONKER, A. K.; RATHORE, K.; NAGARALE, R. K.; VERMA, V. Crosslinking of polyvinyl alcohol (PVA) and effect of crosslinker shape (aliphatic and aromatic) thereof. Journal of Polymers and the Environment, v. 26, n. 5, p. 1782-1794, 2018.

TEOW, Y. H.; KAM, L. M.; MOHAMMAD, A. W. Synthesis of cellulose hydrogel for copper (II) ions adsorption. Journal of environmental chemical engineering, v. 6, n. 4, p. 4588-4597, 2018.

THANGANATHAN, U.; KUMAR, S.; KISHIMOTO, A.; KIMURA, K. Synthesis of organic/inorganic hybrid composite membranes and their structural and conductivity properties. Materials Letters, v. 72, p. 81-87, 2012.

THANGANATHAN, U; NOGAMI, M. Investigations on effects of the incorporation of various ionic liquids on PVA based hybrid membranes for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, v. 40, n. 4, p. 1935-1944, 2015.

TOYODA, N.; YAMAMOTO, T.; ARAKAWA, K.; TESHIMA, A. Preparation of PVA/Polymer Colloid nanocomposite Hydrogel Using PS-PNVA Particles. Chemistry Letters, v. 48, n. 4, p. 378-381, 2019.

VAN ETTEN, E. A.; XIMENES, E. S.; TARASCONI, L. T.; GARCIA, I. T.; FORTE, M. M; BOUDINOV, H. Insulating characteristics of polyvinyl alcohol for integrated electronics. Thin Solid Films, v. 568, p. 111-116, 2014.

VEIT, M. T.; TAVARES, C. R. G.; GOMES-DA-COSTA, S. M.; GUEDES, T. A. Adsorption isotherms of copper (II) for two species of dead fungi biomasses. Process Biochemistry, v. 40, n. 10, p. 3303-3308, 2005.

VIEIRA, R. S.; GUIBAL, E.; SILVA, E. A.; BEPPU, M. M. Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption, v. 13, n. 5, p. 603-611, 2007.

YOON, J. Y.; ZHANG, H.; KIM, Y. K.; HARBOTTLE, D.; LEE, J. W. A hight-strength polyvinyl alcohol ydrogel membrane crosslinked by sulfosuccinic acid for strontium emoval via fitration. Journal of Environmental Chemical Engineering, v. 7, n. 1, p. 102824, 2019.

ZHANG, L.; WEI, J.; ZHAO, X.; LI, F.; JIANG, F.; ZHANG, M.; CHENG, X. Competitive adsorption of strontium and cobalt onto tin antimonate. Chemical Engineering Journal, v. 285, p. 679-689, 2016.

Descargas

Publicado

2021-11-30

Cómo citar

NASCIMENTO, Fabiana Campos; AGUIAR, Liz Contino Vianna; DIAS CHAVES, Mariana Gonçalves; SILVA, Leonardo Martins; CASTRO, José Adilson de. Evaluation of the Kinetic of Cu2+ Adsorption in the PVA Membranes Crosslinked with Sulfosuccinic and Citric Acids. Cadernos UniFOA, Volta Redonda, v. 16, n. 47, 2021. DOI: 10.47385/cadunifoa.v16.n47.3813. Disponível em: https://unifoa.emnuvens.com.br/cadernos/article/view/3813. Acesso em: 24 nov. 2024.

Número

Sección

Tecnologia e Engenharias

Artículos similares

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a