Study on the coupling of thermosolar energy in a thermal desalination system

Authors

DOI:

https://doi.org/10.47385/cadunifoa.v20.n55.5670

Keywords:

Desalination, energy, water

Abstract

The global shortage of fresh water, intensified by population growth, uncontrolled urbanization and climate change, requires sustainable and effective solutions, especially in arid and semiarid regions. In this scenario, thermal desalination of brackish and marine waters, based on the principles of evaporation and condensation, emerges as a relevant technological alternative, although energy-intensive. The integration of this technology with renewable sources, such as solar thermal energy, allows the use of high solar irradiance to supply the heat required for the process, reducing dependence on fossil fuels and environmental impacts. In this perspective, the present work aims to evaluate the technical-economic feasibility and operational performance of a prototype thermal desalination system coupled to a solar thermal energy source, with a view to its applicability in semiarid regions of the state of Bahia. The system will be modeled based on the principles of conservation of mass and energy. The energy potential will be estimated from data obtained by a pyranometer, which measures global solar irradiance. The captured solar energy will be absorbed by two flat solar collectors and then stored in a thermal reservoir. This reservoir will feed a thermal desalination system, in which the accumulated heat will be used as the primary energy source for the brine separation process. It was possible to demonstrate the viability of thermal desalination using solar thermal energy, with an average of 4.06 kWh/m²/day and useful energy of 8.12 kWh/day, the system met the demand of 3.34 kWh to heat and evaporate 5 liters of water. Temperatures between 40° C and 62° C reflect the intermittent heating regime of the solar thermal system, being sufficient to promote evaporation in sub-boiling conditions. The data prove the potential of solar energy for sustainable desalination in tropical regions.

Downloads

Download data is not yet available.

Author Biographies

Gabriel Garcia Bastos de Almeida, Universidade Federal da Bahia

Doutorando em Engenharia Industrial pela Universidade Federal da Bahia. Mestre em Desenvolvimento Regional e Meio Ambiente pelo Centro Universitário Maria Milza (2021). Especialista em Engenharia de Segurança do Trabalho pela Universidade Salvador (2019). Graduado em Engenharia Civil pela Universidade Católica do Salvador (2016). Já atuou como engenheiro de segurança do trabalho, membro do comitê de biossegurança, pesquisador e professor do curso de engenharia civil do Centro Universitário Maria Milza (UNIMAM). Atuou também como assistente técnico e perito judicial no TRT da 5ª região em casos de insalubridade e periculosidade. Tem experiência na área de segurança e combate a sinistros de incêndio, engenharia de segurança do trabalho, higiene ocupacional, pesquisa e extensão, atuando principalmente nos seguintes temas: dessalinização de água, sistema de osmose reversa, sistema de dessalinização térmico, saneamento básico, qualidade de água, segurança e saúde no trabalho, energias renováveis com ênfase em termossolar e fotovoltaico, meio ambiente e sustentabilidade.

Bruno Santos Nascimento, Universidade Federal da Bahia

Possui graduação em Engenharia Elétrica pelo Instituto Federal de Sergipe (IFS) (2022) e Mestrado em Engenharia Industrial (2025) pela Universidade Federal da Bahia (UFBA). Atualmente, no doutorado com foco no desenvolvimento de soluções para o armazenamento de energia solar.Tem experiência nas áreas de Engenharia Elétrica, Redes de Computadores e Sistemas Embarcados, com ênfase no desenvolvimento de produtos baseados em tecnologias embarcadas. Atua principalmente nos seguintes temas: energias renováveis, sistemas de controle, microcontroladores e processos térmicos aplicados ao tratamento de fluidos. Durante o mestrado, desenvolveu uma planta termossolar experimental voltada para diversas aplicações envolvendo o tratamento de fluidos, como água, leite, etc.Foi professor substituto no Instituto Federal de Sergipe Campus Propriá e atualmente é professor pelo Estado de Sergipe.

References

ALMEIDA, G. G. B. Protótipo de pequena escala de dessalinização térmica de água salgada para o semiárido nordestino brasileiro. Cadernos UniFOA, v. 20, n. 55, 2025.

ALMEIDA, G. G. B. et al. Estudo de viabilidade técnico-econômica de protótipo de dessalinização termossolar para o semiárido nordestino. Cadernos UniFOA, v. 19, n. 54, 2024.

BIRNHACK, L. et al. Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water—A review. Desalination, v. 273, n. 1, p. 6-22, 2011.

CUNHA, D. P. S.; PONTES, K. V. Desalination plant integrated with solar thermal energy: a case study for the Brazilian semi-arid. Journal of Cleaner Production, v. 331, p. 129943, 2022.

EKE, J. et al. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination, v. 495, p. 114633, 2020.

HESSEL, V. et al. Chemical micro process engineering: fundamentals, modelling and reactions. John Wiley & Sons, 2004.

GORJIAN, S. et al. Performance evaluation and economics of a locally-made stand-alone hybrid photovoltaic-thermal brackish water reverse osmosis unit. Cleaner Engineering and Technology, v. 2, p. 100078, 2021.

KABEEL, A. E.; EL-SAID, E. M. S. Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector. Desalination, v. 333, n. 1, p. 10-22, 2014.

MOHARRAM, N. A. et al. Techno-economic analysis of a combined concentrated solar power and water desalination plant. Energy Conversion and Management, v. 228, p. 113629, 2021.

ONU. WORLD HEALTH ORGANIZATION; UNITED NATIONS CHILDREN'S FUND. Progress on household drinking water, sanitation and hygiene 2000-2020: five years into the SDGs. World Health Organization, 2021.

PALENZUELA, P. et al. Characterisation of the coupling of multi-effect distillation plants to concentrating solar power plants. Energy, v. 82, p. 986-995, 2015.

PANAGOPOULOS, A. Water-energy nexus: desalination technologies and renewable energy sources. Environmental Science and Pollution Research, v. 28, n. 17, p. 21009-21022, 2021.

REIF, John H.; ALHALABI, Wadee. Solar-thermal powered desalination: Its significant challenges and potential. Renewable and Sustainable Energy Reviews, v. 48, p. 152-165, 2015.

SILVA, M. E. V. et al. Experimental study of tray materials in a thermal desalination tower with controlled heat source. Desalination, v. 374, p. 38-46, 2015.

SILVEIRA, A. P. P. et al. Dessalinização de águas. Oficina de Textos, 2015.

SCHWARZER, K. et al. A new solar desalination system with heat recovery for decentralised drinking water production. Desalination, v. 248, n. 1-3, p. 204-211, 2009.

SCHWARZER, K. et al. Solar thermal desalination system with heat recovery. Desalination, v. 137, n. 1-3, p. 23-29, 2001.

ULLAH, Ihsan; RASUL, Mohammad G. Recent developments in solar thermal desalination technologies: a review. Energies, v. 12, n. 1, p. 119, 2018.

USBR. Desalting Handbook for Planners. 3rd Edition. Desalination and Water Purification Research and Development Report #72. Denver, CO: United States Department of the Interior, Bureau of Reclamation, Water Treatment Engineering and Research Group. 2003.

Published

2025-08-13

How to Cite

GARCIA BASTOS DE ALMEIDA, Gabriel; SANTOS NASCIMENTO, Bruno. Study on the coupling of thermosolar energy in a thermal desalination system. Cadernos UniFOA, Volta Redonda, v. 20, n. 55, p. 1–14, 2025. DOI: 10.47385/cadunifoa.v20.n55.5670. Disponível em: https://unifoa.emnuvens.com.br/cadernos/article/view/5670. Acesso em: 13 aug. 2025.

Issue

Section

Tecnologia e Engenharias

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)