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Modelagem Matemática e Investigação Experimental da Evolução das 
Tensões na Soldagem de Aço

Mathematical modeling and experimental investigation of the stress evolution at 
the steel welding
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Abstract:
After the welding of the steels is common to observe some kind 
of deformation and stress states may be consequently associated 
independently of the process used. This paper presents the results of 
the evolution of stresses during the welding of steels obtained by the 
finite volume method by implementing the transient thermo-mechanical-
metallurgical model where its geometric properties are physical and 
metallurgical dependent. The model includes changes of the elastic 
modulus and yield stress with temperature and the phase transformations. 
The Goldak’s double ellipsoid model for welding heat distribution was 
used to calculate the distribution of volumetric density of heat flow at 
the weld pool vicinity. The effective stress is calculated by the Von Mises 
yield criterion. The experimentals results of the residual stress and 
metallurgical transformation were analyzed by the Barkhausen noise 
and the residual strain measurements were obtained by the ASAME 
(automated strain analysis and measurement environment) 

Keywords:
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Resumo:
O objetivo deste trabalho é estudar por análise dilatométrica à sinteriza-
ção após a soldagem dos aços é comum observar deformações das quais 
podem ser associadas a estados de tensões independentemente do proces-
so utilizado. Este artigo apresenta os resultados da evolução das tensões 
durante	a	soldagem	de	aços	obtidos	pelo	método	dos	volumes	finitos	com	
a implementação do modelo transiente termo-mecânico-metalúrgico com 
a consideração da interdependência entre as propriedades geométricas, fí-
sica e metalúrgica. O modelo inclui variações do módulo de elasticidade, 
do limite de elasticidade ambos dependendo da temperatura e ainda das 
transformações de fase. Para a distribuição do calor na região da solda foi 
utilizado o modelo de Goldak. A tensão efetiva é calculada pelo critério 
de escoamento de Von Mises. Os resultados experimentais das tensões 
residuais foram analisados através do ruído Barkhausen e as medições de 
deformação residual foram obtidos por meio do ASAME.
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1. Introduction 

Welding process applies to several 
process of fabrication of metallic structures, 
ships, pipelines, spaceships, nuclear reactors, 
and pressure vessels. However, a common 
problem associated with welding is the residu-
al stresses and permanent deformations intro-
duced in this procedure. The highly localized 
transient	temperature	field	in	the	welding	pro-
cesses causes non uniform thermal expansion 
and contraction, resulting in residual stresses 
and distortion in the welded structures. High-
tensile residual stresses in regions near the 
weld may promote brittle fracture, fatigue 
and stress corrosion cracking. Therefore, con-
trol and accurate evaluation of weld residual 
stresses and distortion is an important task in 
welding manufacturing. Some experimental 
techniques are used in order to measure resi-
dual stresses from metals welding such as hole 
drilling and x-ray methods. However, some 
experimental methods disadvantages can be 
mentioned such as elevated costs requiring 
special equipment and trained personnel for 
its application beyond the fact that to obtain 
a complete map of residual stresses distribu-
tion in a typical application is practically im-
possible in such a way. Therefore, due to the 
complexity involved in the measurement of 
residual stresses, there has been an increasing 
use of numerical simulation procedures for es-
timating the residual stresses during welding. 
In this work, a coupled thermostructural 3D 
model	that	apply	the	finite	volume	method	and	
the adaptive meshes technique for the addition 
of	filler	material	in	the	weld	pool	was	develo-
ped and implemented in a computational code 
based on FORTRAN programming language 
aiming the analysis of stresses evolution du-
ring the steel welding.

2. Welding Modeling

2.1. Thermo-Elasto-Plastic Modeling (Tep)

The behaviour of TEP[3] material is 
governed by the following conservation 
equations:
•	Equation of thermal energy balance,

( ) ( ) ( )( )p pc T div c v T div k grad T S
t
ρ ρ∂    + = +  ∂



 (1)

•	Equation of momentum balance of 
Cauchy’s	first	law	of	motion,

[ ] iji
i i

j

u div vu f
t t x

σ
ρ ρ

∂∂∂   + = + ∂ ∂ ∂   (2) 

•	Equation of moment of momentum ba-
lance or Cauchy’s second law of motion,

ij jiσ σ=
  (3)

In the above equations, t is time, xj 
Cartesian spatial coordinates, v


 velocity, 

ρ density, cp 
specific	heat,	T	temperature,	

qj	heat	flux,	ui displacement, σij stress ten-
sor, ST  heat source and fi body force.

Constitutive Relations 

Equations (l)-(3) make an open 
system consisting of 7 equations with 16 
unknowns (T, ui, qj, σj). In order to close 
that system, the following constitutive re-
lations are used:
•	Fourier	law,	which	links	the	heat	flux	with	

spatial gradient of temperature, included in 
equation (1). 

j
j

Tq k
x
∂

=
∂

 (4)
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where

1
2

ji
ij

j i

uu
x x

ε
 ∂∂

= +  ∂ ∂   (6) 

is the strain tensor,

1
3

d
ij ij ij kkσ σ δ σ= −

 (7)
is the deviator stress tensor,  

1
23

2
d d
ij ijσ σ σ =  

   (8)

is the effective stress (in the case of Von 
Mises yield criterion), µ	 and	 λ	 are	 Lame’s	
constants,	 (α	 is	 the	 thermal	 expansion	 coef-
ficient,	G	=	µ shear modulus, H’ is the plas-

tic modulus, T, is the reference temperature, 
which corresponds to a thermally undeformed 
state, and 

 
δij Tis the Kronecker delta. Lame’s 

constants are related to the more commonly 
used elastic modulus E and Poisson’s ratio ν 
by the following relationships: 

( )( )1 1 2
Eνλ

ν ν
=

+ −  ( )1
EGµ

ν ν
= =

+  (9)

In the case of elastic conditions, the 
expression within the brackets { } vanishes, 
and the constitutive relation (5) reduces to the 
Duhamel-Neumann form of Hooke’s law.
 
Mathematical Model 

By combining (l)-(5), the following equa-
tions can be obtained:

( ) ( ) ( )( )p pc T div c v T div k grad T S
t
ρ ρ∂    + = +  ∂



 (10)

where k is thermal conductivity and
•	the relation between the TEP stresses and strains

( ) ( ) `2

3
2 3 2

1
3

d d
ij kl kl

ij ij ij kk ij r

G d
d d d T T

H
G

σ σ ε
σ µ ε λδ ε λ µ αδ

σ

 
 
 = + − + − −  

  +      (5)

( ) ji i i k
p

j j j i i k

uu u u udiv c v
t t t x x x x x x

δδ δ δ δρ ρ µ µ µ
  ∂   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂   + = + +          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        



 (11)

where δT and δui are temperature and 
displacement increments, respectively. These 
equations make a closed system of four equa-
tions with four unknowns (δT, δui). Since the 
material physical properties (c, k, μ, λ, α) are in 
general functions of temperature, the equations 
(10) are non-linear and coupled, even in the 
thermo-elastic case. In the case where the part 
of the heat energy source term coming from 
the thermo-elastic cooling/ heating due to the 
elastic volume change (3λ + 2μ)αTr(∂εk  /∂t) 
can be neglected (1/3α)(∂εk / ∂t) (∂T/ ∂t), the 
heat energy equation is decoupled from the 
momentum equations and can be solved inde-
pendently. However, in order to solve momen-
tum	equations,	the	temperature	field	has	to	be	
known. In order to complete a mathematical 

model, initial and boundary conditions are to 
be provided. The initial condition temperature 
and displacements in the whole solution do-
main at the initial instant of time have to be 
given. Boundary conditions can be either of 
Dirichlet or Von Neuman type, i.e. temperatu-
re	and/or	heat	flux	and	displacements	and	/or	
forces	(surface	tractions)	have	to	be	specified	
at all boundaries.

2.2. Thermal Boundary Condition

a) The energy added to the plate was cal-
culated by the product of current through the 
welding voltage obtained from the experimen-
tal procedure. The Goldak’s double ellipsoid 
model for welding heat distribution was used 
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to calculate the distribution of volumetric den-
sity	of	heat	flow	at	the	weld	pool	vicinity.

b)	We	 adopted	 a	 global	 coefficient	 for	
the entire board, which involved the loss of 
heat by convection and radiation, whose esti-
mated value was 150 W/m2K. 

2.3. Initial Condition

a) Temperature: 25ºC on all sides of the plate;
b) Concentration: corresponding to the 

chemical composition of steel.

2.4. Modeling the Kinetics of Phase 
Transformation

In this work we used an extended model of 
Avrami kinetic law proposed by Reti et al. [8] in 
order to predict the formation of ferrite, pearlite 
and bainite during continuous cooling after aus-
tenitizing steel hipoeutetóides low-alloy,

1 2(1 ,......, )
m

i i
n

dy dB ty y y
dt dt

= − −
 1,2,....,i n=  (12)

where
•	 1 2, ,......, ny y y  Match the volume fraction 

of phases;
• m	Is	the	Avrami	coefficient;
• Bi = Bi(T) Are parameters characterizing the 

rates of nucleation and growth processes (ob-
tained from the TTT curves) which are rede-
fined	 to	 take	 into	 account	 also	 the	 effect	 of	
austenite grain size in the transformations. 
Already the formation of martensite was regar-
ded as dependent solely on temperature, accor-
ding to the Koistinen-Marburger equation [6]

( )( )1 exp 0,011 sf M T= − − − sT M≤  (13)
which f corresponds to the volume fraction 
of martensite formed and corresponds to 
the temperature at the beginning of its 
transformation (obtained from the TTT curve). 

2.5. Numerical Solution

The numerical simulation was based 
on	 the	 finite	 volume	method	 using	 the	 tech-
nique of adaptive meshes with the purpose of 
tracking the formation of the weld bead. The 
finite	volume	method	was	adapted	to	a	system	

of generalized coordinates (not orthogonal), 
which	allowed	to	represent	accurately	the	final	
geometry of the welded plate. The solution of 
the discretized equations was obtained throu-
gh line by line method described in Patankar 
[1] and based on the tri-diagonal algorithm. 
The solution of the equations was performed 
in a coupled way represent the interactions of 
temperature	fields	and	phase	transformation	in	
addition to considering the nonlinearities of 
the properties of steels as a function of tempe-
rature and phases present.

3. Results

3.1. Numerical Results

The Figure (1) present the overview of the 
finite	volume	mesh	used	for	simulated.

Figure 1. Finite volume mesh.

Toward X specimen has 60 mm wide 
and were divided into 32 volumes of varying 
sizes	being	more	refined	in	the	vicinity	of	the	
weld bead - the region of greatest interest. 
Toward Y body of evidence has 200 mm in 
length were divided into 100 volumes of equal 
size. Finally toward Z body of evidence has 
5.0 mm thick which were divided into 17 
equal volumes.

This chapter will present the results ex-
pressed in units of the international system 
(SI), obtained from numerical simulation for 
the evolution of temperature, stress (S) and 
their respective components additive thermal 
(STH), elastic (SE) and plastic (SP), equiva-
lent Von Misses (SigmaBarra) and the values 
of the deformations (E).
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Figure 2. Distribution of Temperature for Steel AISI 4340 after 15s.

Figure 3. Section STH1 for AISI 4340 Steel after 15s.

Figure 4. Section STH2 for AISI 4340 Steel after 15s.

Figure 5. Distribution of Temperature for Steel AISI 1020 after 450s.

Figure 6. S22 for the steel AISI 1020 after 450s.

Figure 7. Numerical simulation results for the steel AISI 4340 
after welding: martensite.

Figure 8. micrograph for the steel AISI 4340 after welding: 
martensite (200x)

4. Experimental Results

Table 1 shows the chemical composition 
of steels tested.

Table 1. Chemical analysis of steel (weight %). 

AÇO C Mn P S Si Cr Ni Mo
AISI-4340 0,39 0,69 0,015 0,011 0,26 0,78 2,08 0,25
AISI-1020 0,19 0,70 0,013 0,012 0,28 - - -

This section will present the results of hysteresis curves and analysis of the envelope 
Barkhausen[4].
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Figure 9. Barkhausen: transverse hysteresis after welding for steels AISI4340 and AISI1020.

Figure 10. Barkhausen envelope after welding for steels AISI4340 and AISI 1020.

Comparing the deformations measured in the ASAME and the numerically simulated after 
welding can be observed that the residual strains are very small. The deformations in the ASAME 
measures are limited to precision tool for marking the grid.

Figure 11. Deformation E22 after welding measures with the ASAME and numerical simulate.

Figure 12. Deformation E11 after welding measures with the ASAME and numerical simulate.
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5. Conclusions 

1 - The proposed model shows good agree-
ment with experimental results, allowing to 
predict how the stress state during the welding 
process of steel since the beginning of the de-
position	of	filler	metal	to	the	final	cooling.

 
2 - Comparing the simulation results for the 
AISI 4340 and AISI 1020 is observed that 
the	phase	transformation	did	not	influence	the	
values of the stresses and deformations.

 
3 - The temperature gradient caused by the depo-
sition	of	filler	metal	is	who	most	influences	the	
deformation gradients and consequently the evo-
lution	of	stress	fields	and	deformations.	Certainly	
hence the appearance of residual stresses in the 
region of onset of cooling after welding.

 
4 - The results indicate that the welding pro-
cess can be analyzed by means of Barkhausen 
signals.	The	most	significant	changes	occurred	
for the display of AISI 4340 steel, which is a 
high hardenability. Therefore, this material is 
expected in the region of the weld (HAZ) a 
larger amount of martensite in carbon steel, as 
revealed by the simulation.

 
5 - If the carbon steel AISI1020, changes in 
both the hysteresis curve as the envelope of 
the Barkhausen signal can be more directly at-
tributed to residual stresses.

6 - The conclusion is that the analyzing 
Barkhausen	 and	 hysteresis	 curves	 reflect	 the	
microstructural changes and changes in re-
sidual stresses that occurred in the welding 
process, and that these techniques are useful 
for pointing out the difference in the pro-
cess of welding of different materials, in this 
case, carbon steel and AISI1020 AISI4340.  
 
7	-	The	results	indicate	that,	because	it	is	diffi-
cult to separate the effects due to microstruc-
tural phase changes (martensite formation) of 
the effects of residual stresses proper, the me-
thod barkhaseun is primarily a tool for qualita-
tive analysis, and analyzed for the case use of 
the model provides a quantitative prediction.

 
8 - In the cases tested computationally and 
experimentally the residual strains observed 
were very small.

 
9 - Comparing the residual stresses obtained 
by numerical methods with those obtained 
from the analysis barkhaseun both show the 
same qualitative interpretation.
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